Assessing the Impact of Wind Energy on Electricity Prices in Germany

Franziska Schulz Brenda López Cabrera Manuel Mezger

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

Electricity spot prices

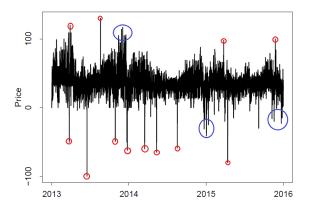


Figure 1: Hourly electricity spot prices from EEX

Electricity spot prices

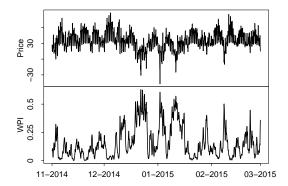


Figure 2: Hourly electricity spot prices from EEX and Wind Penetration Index (WPI) The Impact of Wind Energy on Electricity Prices

German Electricity Market

- Limited storability
- 🖸 Inelastic demand
- ☑ Feed-in guarantee of renewable energy
- Day-ahead single price auction
- Merit order
 Merit-Order
- ⊡ Merit order effect (Würzburg et al., 2013)

Challenges

- Seasonality
- Mean reversion
- 🖸 High volatility
- 🖸 Jumps
- Effect of renewables
- Uncertainty about states

Objectives

Modeling hourly spot prices

- Assess impact of wind power generation
- Capture spikes

Day-ahead forecasting

Evaluate against benchmark models

Methodology

- Markov-switching model
 - States with different underlying stochastic processes
 - Frequent changes at random points in time between states
- Time-varying switching probabilities
 - Dependence on wind power generation

Outline

- 1. Motivation \checkmark
- 2. Data
- 3. Methodology
- 4. Empirical results
- 5. Conclusion

Data

🖸 Hourly data on

- ► Total load (ENTSO-E)
- Day-ahead spot price (Bloomberg)
- Day-ahead forecasts of wind power production (TSOs)
- ☑ from January 2013 to December 2015
- □ Subsample of two years for in-sample fitting

Data

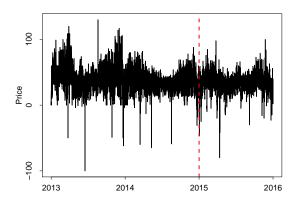


Figure 3: Hourly electricity spot prices from EEX

Statistical Model for Spot Prices

$$\widetilde{\pi}_t = \pi_t + \Lambda_t, \quad t = 1, \dots, n$$

where

- \boxdot $\widetilde{\pi}_t$ observed price
- \boxdot π_t stochastic component
- \boxdot Λ_t deterministic seasonal component

Deterministic Seasonal Component

$$\Lambda_{s,k} = a_s + b_s k + \sum_{i=1}^{11} c_{i,s} m_{i,k} + \sum_{j=1}^{6} d_{j,s} w_{j,k} + e_s h_k$$

where

- *m_{i,t}* dummies for months
- d_{j,t} dummies for weekdays
- \square h_t dummy for public holidays
- \Box a, b, c_i, d_i, e parameters to be estimated

Wind Penetration Index

☑ Proportion of electricity produced from wind

$$WPI_t = \frac{V_t}{D_t}$$

where

 \triangleright V_t - day-ahead forecast of wind power production at hour t

 \triangleright D_t - total load at hour t

Wind Penetration Indicator

$$d_t := \left\{ egin{array}{ll} 0 & ext{if} \ WP_t \leq Q_{0.75}(WP_t) \ 1 & ext{if} \ WP_t \geq Q_{0.75}(WP_t) \end{array}
ight.$$

Data

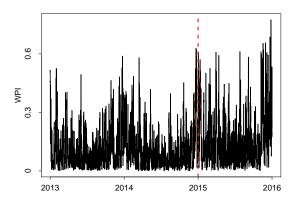


Figure 4: Wind Penetration Index (WPI)

Two Regime Markov-Switching Model

⊡ For a set of regimes
$$S = \{1, 2\}$$

$$\pi_t = \begin{cases} f_1(Z_t; \theta) & \text{if } s_t = 1\\ f_2(Z_t; \theta) & \text{if } s_t = 2 \end{cases}$$

where

- \blacktriangleright f_{s_t} underlying process
- \triangleright Z_t explanatory variables
- \blacktriangleright θ parameters

Two Regime Markov-Switching Model

■ States st are unobserved

□ Switches are governed by first order Markov Chain

$$\mathsf{P}(s_t = j | s_{t-1} = i, s_{t-2} = k, \ldots) = \mathsf{P}(s_t = j | s_{t-1} = i) = p_{ij}$$

Transition probabilities

$$\mathbf{P} = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} p_{11} & 1 - p_{11} \\ 1 - p_{22} & p_{22} \end{pmatrix}$$

Two Regime Markov-Switching Model for electricity

$$\pi_t = \begin{cases} \pi_{1,t} = \phi_0 + \phi_1 \pi_{t-1} + \varepsilon_t & \text{if } s_t = 1 \text{ (base regime)} \\ \\ \pi_{2,t} \sim \mathsf{N}(\mu_2, \sigma_2^2) & \text{if } s_t = 2 \text{ (jump regime)} \end{cases}$$

Base regime: AR(1)-process

 $\varepsilon_t \sim \mathsf{N}(0, \sigma_1)$

Jump regime: Gaussian distribution

 \boxdot $\phi_0, \phi_1, \sigma_1, \mu_2, \sigma_2$ - parameters to be estimated

Time-Varying Probabilities

$$\mathsf{P}_{t} = \begin{pmatrix} p_{t}^{11} & 1 - p_{t}^{11} \\ \\ 1 - p_{t}^{22} & p_{t}^{22} \end{pmatrix} = \begin{pmatrix} \frac{e^{x_{t}\beta_{1}}}{1 + e^{x_{t}\beta_{1}}} & 1 - \frac{e^{x_{t}\beta_{1}}}{1 + e^{x_{t}\beta_{1}}} \\ 1 - \frac{e^{x_{t}\beta_{2}}}{1 + e^{x_{t}\beta_{2}}} & \frac{e^{x_{t}\beta_{2}}}{1 + e^{x_{t}\beta_{2}}} \end{pmatrix}$$

For $x_t = d_t$

$$\mathbf{P}_{t} = \begin{cases} \begin{pmatrix} \frac{e^{\beta_{10}}}{1+e^{\beta_{10}}} & \frac{1}{1+e^{\beta_{10}}} \\ \\ \frac{1}{1+e^{\beta_{20}}} & \frac{e^{\beta_{20}}}{1+e^{\beta_{20}}} \end{pmatrix} & \text{if } d_{t} = 0 \\ \\ \begin{pmatrix} \frac{e^{\beta_{10}+\beta_{11}}}{1+e^{\beta_{10}+\beta_{11}}} & \frac{1}{1+e^{\beta_{10}+\beta_{11}}} \\ \\ \frac{1}{1+e^{\beta_{20}+\beta_{21}}} & \frac{e^{\beta_{20}+\beta_{21}}}{1+e^{\beta_{20}+\beta_{21}}} \end{pmatrix} & \text{if } d_{t} = 1 \end{cases}$$

In-sample Estimates

	ϕ_{0}	ϕ_1	σ_1	μ_2	σ_2
Constant	0.32	0.83	5.98	-7.26	25.53
Time-varying	0.87	0.81	5.73	-8.37	13.28

Table 1: Parameter Estimates

The Impact of Wind Energy on Electricity Prices ------

- 4-1

Estimated Transition Probabilities

Constant transition probabilities

$$\mathbf{P} = \begin{pmatrix} 0.98 & 0.02 \\ 0.26 & 0.74 \end{pmatrix}$$

Time-varying transition probabilities

$$\mathbf{P}_{t} = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0.82 & 0.08 \end{pmatrix} & \text{if } d_{t} = 0 \\ \\ \begin{pmatrix} 0.67 & 0.32 \\ 0 & 1 \end{pmatrix} & \text{if } d_{t} = 1 \end{cases}$$

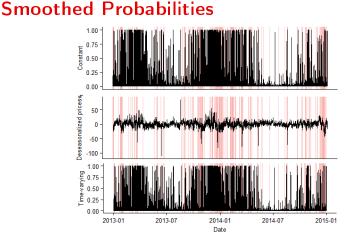


Figure 5: Probability of being in state s = 1 together with deseasonalized price and Wind Penetration Indicator (red shades)

Forecast Evaluation

	MAE	SD
Constant	5.97	(0.07)
Time-varying	5.13	(0.08)
Persistent	9.87	(0.14)
ARIMA	6.24	(0.09)

Table 2: Forecast evaluation based on Mean Absolute Error (MAE). Standard deviation in parenthesis.

Conclusion and Outlook

Flexible Model

□ Integrate effect of wind power production

- Capture Spikes
- Good forecasting performance
- Possible extensions
 - Continuous effect of wind
 - Heavy-tailed distribution for jump regime

Benhmad, F., Percebois, J.

Wind power feed-in impact on electricity prices in Germany 2009-2013

European Journal of Comparative Economics, 2016

- Bierbrauer, M., Menn, C., Rachev, S.T., Trück, S. Spot and derivative pricing in the EEX power market Journal of Banking & Finance, 2007
- Diebold, F. X., Lee, J.-H., Weinbach, G. C.
 Regime switching with time-varying transition probabilities.
 Business Cycles: Durations, Dynamics, and Forecasting, 1994

Hamilton, J.D.

A new approach to the economic analysis of nonstationary time series and the business cycle Econometrica, 1989

🍉 Hamilton, J.D.

Time Series Analysis Princeton University Press, 1994

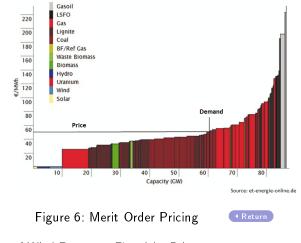
Jónsson, T., Pinson, P., Madsen, H. On the market impact of wind energy forecasts Energy Economics, 2010

Nicolisi, M.

Wind power integration and power system flexibility - An empirical analysis of extreme events in Germany under the new negative price regime Energy Policy, 2010

Veraart, A.E.D.

Modelling the impact of wind power production on electricity prices by regime-switching Lévy semistationary processes Stochastics of Environmental and Financial Economics, 2015


Weron, R., Bierbrauer, M., Trück, S. Modeling electricity prices: jump diffusion and regimeswitching Physica A, 2004

Würzburg, K., Labandeira, X., and Linares, P. Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria Energy Economics, 2013

Merit Order

